GLOSSARY

Little Algebras

\square	Operator symbol for "necessity"
	see modal logic, necessary, possibility
\diamond	Operator symbol for "it is possible that"
	see also modal logic, necessary, possibility
abstract algebra $_{1}$	A branch of meta-mathematics
abstract algebra ${ }_{2}$	A set (the domain of discourse) with operations (the signature) on that set. Often there are constants, axioms, and functions. There are no relations employed in a traditional algebra. The logic is deductive logic only, and the statements are declarative. Algebraic formulae are translated (in part) to procedures within the calculus so that useful work may be performed (i.e., finding the values that satisfy). Issues, such as decidability, are not interesting in a calculus; the formula is presumed satisfiable (i.e., that it is true for some values) and focuses on finding the values. Unsatisfiable formulae are treated as exceptional cases. see algebraic structure, calculus, Chomsky hierarchy, compile, domain of discourse, interpretation function, language, model theory, numerical methods, signature, valuation function.
accessible	If world A can lead to world B
	see also conversational background, propositional attitude, states of world
accessibility relation	A function that is true if world A can lead to world B.
	See also propositional attitude
algebraic structure	An abstract algebra or the list of the major elements that make up an abstract algebra. see abstract algebra
ambiguity referential ambiguity	Uncertainty about which of a word's or expression's possible meanings is the one intended. An expression of reference can be interpreted as designating more than one thing. Can be semantic structure (e.g. "every man loves exactly one woman").
	See also diaphoric, vague
fallacy of equivocation	Treating two distinct meanings of a word as though they were the same.
anonymous	There is not a name (or designator) for the item, relationship, etc.
arguments	First kind: objects
kind	Second kind: first-level functions of one argument
	Third kind: first-level functions of two arguments

COPYRIGHT Randall MaAs, 2005-2010
FILE G:\My Documents\Glossary\Little Algebras;8.docx

ATN's	Bill Woods BBN, Debated with rule-based knowledge system. LUNAR system. IBM=Stan Petrick, TansWA.			Terry Winograd, The Blocks World John Kimbal, Lyn Frazier, Janet Dean, Fodor.
	ATNS: "Too pow	ful" - costly in ter	nerate too much output.	
	Seems little diffe	t from shift-reduce		
	See also parsers			
parts	Hold Stack			
	Lexicon (table of word and properties)			
	Register			
	Active stack			
	History stack.			
	Everytime the stack is indeterminant:			
	- Record all relevant information and			
	- Push it onto the stack			
standard conditions: arc labels	Push X: Invoke the X network			
	Cat X: Check the lexicon t see if word is of category X			
	Jump			
standard actions	Hold, retrieve			
	Attachment of a new daughter subtree to the top of the stack			
	Name for jump			
	Non-standard condition: standard condition and user defined			
	Nonstandard action.			
attribute	'Characteristics, qualities, or performance parameters of alternatives' whereby an item can be distinguished. An attribute is essential: all members of a class must have the attribute. This allows classes to be distinguished.			
	See also property, quality			
axiomatic development	Starts with:			
	- Undefined			
	- Undefined	ationships		
	- Axioms rel	ng the undefined tern	ned relationships	
	- Developm	of theorems based	e definitions	
basis	The underlying core 'axiomatic' functions and operations in a language. Other functions, including conventional ones, are defined in terms of these.			
belief context	Belief contexts are akin to a possible world and are an important case in intensional semantics.. They seldom introduce a new relation, or a new linking relation. Belief contexts primarily provide a relation's intensional definition.			
	Context \#	Relation Name	Definitions	Table 1: Belief Context
	1	loves	see loves ${ }^{1}()$ below	
	1	likes	see likes ${ }^{1}()$	
	1	knows	see knows ${ }^{1}()$	
	*-			

$\mathbf{2}$	loves	see $\operatorname{loves}^{2}()$		
$\mathbf{2}$	likes	see $\operatorname{likes}^{2}()$		
$\mathbf{2}$	knows	see $\operatorname{knows}^{2}()$		
\ldots				
param $_{1}$	\ldots	param $_{n}$		Table 2: loves $^{1}()$
:---:				

Similar for likes ${ }^{1}$ (), knows $^{I}()$, likes ${ }^{2}()$, etc.
believes Believes is a context for interpreting the concept. Set of different belief contexts. Few algebra's of meta logic discuss or are interested in belief.

Trust network adds signatures by others to the <property id, value> pair, and/or a level of certainty. The trust function (metrics) are built on this.

See also propositional attitude

bill of materials problem

binding The sense of a symbol having an assigned value.
bound Symbol has a precise value

Büchi automaton A state machine, similar to a finite state machine, which can take infinite inputs; it includes a set of initial states and a set of good states. (They are also like Kripke structures, but interpreted slightly differently). They are used in model (or protocol) checking to say that some action will eventually be taken after event y (to find cases where this doesn't happen), or that action x will never occur after the event.

See also bounded model checking, Kripke structure, model checking, temporal logic (linear)
can see capability
capability

Table 3: Different forms of capability/possibility

term		
can	capability	ability
could	capability	ability

did, do, does	permission	emphatic
may	possibility pos	
must	obligation	
shall	obligation	
should	obligation	
will	obligation	intension
would	possibility	

counterfactual historians	"Robert Fogel in his 1962 classic Railroads and American Economic Growth who won the 1993 Noble in economic science - revolutionized economic history by posing counterfactuals and assembling data to statistically test the narratives [frequently put forth]." Counterfactual historians use simulations and game theory to evaluate the necessity and possibilities posed by past events esp. among WWII re-creationists. ${ }^{1}$	Postrel, Viriginia, "Rational Exuberance" New York Times Book Review, July 22, 2007. Quote edited (ellipsis omitted) for continuity.
counter part	Opposite of a rigid designator, people are slightly different at each time, place and possible world.	
covering	A logical proposition or a set of propositions covers an event or logical hypothesis if the later are the logical outcome of the propositions or can otherwise be deduced from them.	
crossworld identity problem	A problem in possible worlds, where one has to decide who in world B is the same as a given person in world A. This problem is avoided if you use a rigid designator, or kept tractable if you take care with counter parts. see also counterparts, rigid designator	
decidability	Do we have a systematic method of evaluating a statement - determining if it is true or false? see also decision procedure, Entscheidungsproblem, Halting problem	
decision procedure	A stepwise method to decide if a given statement is true or false. see also evaluation procedure, valuation function	
de dicto	See diaphoric	
de re	See diaphoric	
de se	See diaphoric	
definitions hierarchical	Hierarchical definitions (e.g. Genus \& Species) organize the senses of meaning in such a way that shared properties can be represented concisely.	
dense	In dense domains, given any two non-identical items, there is always an infinite number of items between them. Methods of deduction differ for dense domains (such as real numbers) from sparse domains (such as discrete sets).	
denotational semantics	Semantics of computer programs, discussed in a ponderous manner.	
deontic logic	Deontic logic is a specific type of moral logic, limited to topics of rights and responsibilities. The logic is composed of subjective and counterfactual conditions: obligation and permission; ought and may. Deny, allow, permit. Information security is interested in users, objects, actions, and media/channel and relations based upon those. see also modal logic	
designator	There are different things meant by designator intension, or extension (set of items	
rigid designator	rigid designators refer to the same entity in every possible world.	
diagnosis	An application of declarative systems, depending on decision trees, examining symptoms, forming and ranking hypothesis. This works well for small systems,	

[^0]| | but not so much with large \#'s of components and large numbers of combinations with a large set of observations - a problem of combinatorial 'explosion.' |
| :---: | :---: |
| model based | Starts with a declarative description of normal behaviour, looks for a distinction (or difference) between current behaviour. Consistency-based diagnosis is a specific method. |
| diaphoric | Distinctions in the intensional reading of a statement |
| de dicto | Translates "Miss America has always been blonde" into: \forall_{x} MissAmerica $(x) \wedge$ Blonde (x) |
| de re | Translates "Miss America has always been blonde" into: MissAmerica $(x$, now $) \wedge \forall_{t}$ Blonde (x, t) |
| de se | Peter see a picture of man and thinks the man is handsome; the pictured man is Peter. |
| de signo | Value range |
| disambiguation | A method of handling several words with the same meaning, or a word with several meanings (possible based on sense) |
| dual | Symmetric logic relations |
| entailment | B entails C when both encode the same information, possibly very differently. |
| Entscheidungsproblem | Literally decision problem - a question of whether or not one can decide if a statement is true. The Halting problem, where a machine changes what it does to invalidate your prediction (decision), is the classic proof. Most problems are not so perverse, but those that are can be prevented by not allowing such decisions to be known to the system.
 see also Halting problem |
| equation | See also expression, function, interpretation, model, propositions, sentences, situations |
| | equation A relation between two expression |
| | expression Doesn't have a relational comparison |
| | function Assigns unique value to each input |
| | interpretation Assigns intention |
| | model Assigns extension |
| | proposition Set of situations |
| | sentence Denotes proposition(s) |
| | situation Part of world |

Table 6: distinction between expression
evaluation procedure A stepwise, often mechanical, process of inferring the values of variables, or it a given statement is true.
see also intermediary language reduction procedure, valuation function
explanation of facts principled
"explanations that emerge from a tightly interconnected system of general statements and which lead to further predictions about as yet undiscovered facts."

expression extensible language

form
canonical
normal form
prenex normal form
formal semantics
formal system characterizing precisely

formula

closed
generalization

Gödel number

See equation
"A base language which provides a complete but minimal set of primitive. Facilities, such as elementary data types, and simple operations and control constants.
"Extension mechanisms which allow the definition of new language features in terms of the base language primitives.

Semantic extensions: introduce new kinds of objects, data types
Syntactic extensions. New notations for existing or user defined mechanisms.
The set of items referred to by a variable or phrase, or that satisfy a sentence or phrase's logical specifications.
see also intension
True/false, quantity or set when the statement (formulae) is evaluated against a specific world, and other context dummy variables.

See also conversational background

Karl Popper's idea that theories should produce verifiable statements experiments could decide if the statement is true of false - as a form of negative feedback in the scientific process. Popper argued that knowledge increases as people over-predict and fall back upon falsification,
see also observability, pragmatics, strength, verificationist
Written in the most standard, conventional, logical way. The rules \& process is called canonicalization

A simplified form (where otherwise many are possible) that allows some method to be applied. The process is called normalization
Strings of quantifiers followed by a quantifier-free portion
Referent, extensions, intension,

- Syntax streamlining
- An arithmetization method (e.g. Gödel numbering)
- A definite method of going back and forth between the arithmetic number coding and conventional notation
- To make tractable assign id \# to the objects of your attention: each symbol, string, well-formed formula, finite chain of those, proof, etc. get such a number

All of the variables are bound - if not as parameters or constants, then by 'quantification'

An accurate statement in precise language of what was found with respect to the tendencies, relationships, regularities or patterning among variables under study.

A method for assigning statements a unique number:

1. Setup axioms for the predicate calculus along with a rule of inference by which one can get not formulae from old ones.
2. Set up axioms for standard arithmetic in the language of predicate calculus.
3. Define a numbering for each formula or sequence of formulae in the resulting formal system.
The code number for each symbol (and operator) is then computed:
4. A statement is treated as a string of elements (i.e. symbols and operators).

The index of each element within the string is assigned a prime number.
5. Each prime corresponding to each element is raised to the power of the element's code number.
6. These are multiplied with each other to yield the Gödel number.

symbol code	$\begin{aligned} & = \\ & 1 \end{aligned}$	$\begin{aligned} & + \\ & 2 \end{aligned}$	$\begin{aligned} & \hline * \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & \text {) } \\ & 5 \end{aligned}$	6		$\begin{aligned} & s \\ & 7 \end{aligned}$	$\begin{aligned} & x \\ & 8 \end{aligned}$		$\begin{aligned} & Y \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & 10 \end{aligned}$	0	m	Table 7: Gödel codex
formula code	$\begin{aligned} & y= \\ & 2^{9} 3 \end{aligned}$	$\begin{aligned} & = \\ & 3^{1} \end{aligned}$	$\begin{aligned} & B \quad+ \\ & 5^{10} 7 \end{aligned}$	$\begin{aligned} & + \\ & 7^{2} \end{aligned}$	$\begin{aligned} & m \\ & 11^{11} \end{aligned}$										Table 8: Gödel code
formula code	$\begin{aligned} & y= \\ & 2^{9} 3 \end{aligned}$	$\begin{aligned} & = \\ & 3^{1} \end{aligned}$	5^{7}	7^{4}	11^{8}	13		10	${ }^{0} 19$						Table 9: Gödel code

Gödel theorem	In any sound, consistent, formal system containing arithmetic, there are true statements that cannot be proved.
guessing	When NFA's have multiple items to choose from at some stages of computation, they perform faster (than other methods) if they guess well; backtracking allows them to handle when they guess wrong. Oracle machines can compute, with less complexity (e.g. faster), some problems that other machines would do poorly. Most applications of these methods are guessing the intent in parsing, or solving difficult numerical problems (an application in satisfaction). One form of guessing is to try all acceptable paths at once, (but only track all states the machine may be in, rather than the path).

see also back-tracking, oracle machines, regular expression, satisfaction, witness function
halting problem A classic 'decidability' problem: Given a Turing Machine and a tape (program), decide whether the machine will halt while running that tape. If a Turing Machine or program is allowed to know the answer to that question, and it can do that opposite - if you say it will halt, it makes sure that it will not; if you say that it will run forever, it chooses to halt.
see also Entscheidungsproblem
Finds the longest recurring substring.
See also Bentley-McIlroy matching
Tools: solver, scheduler, dispatcher, configuration
Terms: powerful, advanced, versatile, easy, clear

Application	Long-term	Published schedule	Operational Schedule	Table 10: Planning horizon
Scope	Strategic	Tactical	Operational	
Timesteps	Month	<-Week->Days->	Hour	
Drivers	Money	\ldots	Feasibility	
Technique	LP	MIP/Hybrid	CP	

incompleteness Gödel showed some systems - including sufficiently strong and consistent - will have statements that can't be evaluated. Some such or similar systems are also undecidable.
see also Entscheidungsproblem, Halting problem
'independent of' The hypothesis is not a logical outcome of the axioms - they can't be combined in a finite number of steps to generate the hypothesis. This hypothesis may or may not
valid.

indexical terms	Terms defined by context
	See also conversational background
intension	The formula or statement as declarative logical specification. The formulae is marked against which world/time it is to be evaluated against (to extensional form). see also extension
intermediary language	There is some debate whether a model's interpretation should be described in terms of a machine (i.e., an evaluation procedure), or translated into a set of declarative statements that must be used by another model to infer the values. With a single model, or small number of models, it is simpler to use a direct evaluation procedure. With a large number of models, it may be easier to translate each into a more sophisticated intermediary language. This also reduces the combinatorial complexity of translating from one language to another: either you need two translators for every language (two and from the Intermediary language) or $2 \mathrm{n}^{2}$ translators. see also compiler, evaluation procedure, valuation function.
interpretation	
interpretation function	Interprets sentences in the language. The language can be very simple or complex. I'm not familiar with any past a Chomsky level 2 . The language can be a non-trivial language of any form that can be systematically interpreted. see also evaluation procedure, intermediary language, valuation function
Kripke frame	k set of states
	$\mathrm{i}<=\mathrm{j}$ relation, compatbility of these states
	values/models
Kripke structure	A non-deterministic automata:
	- The nodes are the reachable (possible) states, - The edges are the operations that changed the state - Something that maps the state (node) to what it represents
	Checks that temporal logic formulae are valid. A counter example is a trace of the system that violates the property. State transition structure; each state is a value at time. All behaviours of the Kripke structure satisfy or violate formula.
language elements	Indexicals (items that are identified in context), determiners, quantifiers, propositional connectives
formal	Includes axioms, entities are grouped by classes. Much of the discussion of a formal language involves details of the syntax - especially what constitutes a well-formed formula - precluding the much larger issue of meaning and methods of evaluation.
fragment	A language fragment is employed for any of the following reasoning: for tutorial purposes (pedagogy), it is as far we got in the analysis of larger (possibly hypothetical) language, or if the language elements used to describe a problem conform to the language fragment, there may be many advantages to using the special-case.
metalanguage	Describes an object language. This is needed to define the truth notions about an object language. An object language that is allowed to 'describe' which of its

nomohistorical correspondence | X is possible because it doesn't violate the laws |
| :--- |
| of nature, compatible with actual history |

Operator	Intension	Notation
after before necessary	A before B $\begin{aligned} & \mathrm{A}<\mathrm{B} \\ & P(A)=1 \\ & P(A \rightarrow B)=1 \end{aligned}$ if A is not unrelated to B : In all possible worlds that A is true, so is B; if unrelated, it is not likely.	A after B A before B A must happen when A happens so must B
possible	$\begin{aligned} & P(A)>\varepsilon \\ & P(A \rightarrow B)>\varepsilon \end{aligned}$ if A is not unrelated to B : There exists a possible worlds where $A \& B ;$ if unrelated, this merely Possible(B)	A can happen when A happens so may B

modal system

A modal system uses a language, a set of worlds, and a means of relating the worlds. The worlds might correspond to alternative outcomes for choices (they would be related by a common choice point), beliefs, tableau of facts, etc.
see also model world

Type	Distinction
ability	
alephic modality circumstantial / dynamic	Necessary, possible; if it is necessary must be possible
deontic	Permissible, obligatory
epistemic modality	knows, believes
temporal modality	always, sometimes

model $_{\mathbf{1}}$	A binding of variables to values. See also satisfaction
model finder	A satisfaction procedure, finds the bindings of variables (the model) that make the specification true; often a constraint solver (compile and hand to a SAT solver)
modeling language	Expresses structure constraints and behaviour

model $_{2}$

A formal framework for using a few central relationships to represent the basic features of a complex system; models discard important elements and philosophical considerations: they are not truth. Models are often described by their role, elements, and test of specification error.

Models should be open about the underlying theoretical principles. These principles must have a concrete form in definite algebraic terms. The model should be transparent about its connections, mechanisms, and flow, coupling effects to outputs. It should be easy to tinker with, yet the user should not have to understand exactly how it works. What are the (hereto fore) unseen expectations?
see endogenous variables, functional explanation, Markov model, Poisson model
Term \quad Distinction

Table 12: Modal operators in more detail more
■

A can happen when A happens so may B

Table 13: Distinction between types of modality

Models are "clipped and pruned till they resemble the conventional birds and animals of decorative art." Alfred Marshall.

	group groups	Boids
cosmos		Retwork theory

Circumstance	Technique
Decisions in competitive circumstance Game strategy Lines Table 17: Technique for a given circumstance Many others queuing Minimizing costs queuing Future events directly affected by preceding events stock control Attention to risk markov chains Explore Ideas project management Time-based events simulation - without loss or humiliation\quad queuing	

analytical model
behavioural model
Describes the system primarily using

- Its actions and actions of its components,
- Its interaction with the outside world,
- Interactions of its components,
- Causality relation

Describes the function and timing, independent of a specific implementation.
see also functional explanation
economic models Modeling economics poses a challenge since economic relations are very vague. Relationships only have a topology, but no definitive structure. (Does a rise in output, mean a small linear change, exponential, or a probability?) This means the integration of changes will be way off. The relationships may be wrong, or purely ideological; they may be correlative for a while, but the correlations may disappear once the state or other factor tries to manipulate them. Can't predict results based on the results under an old regime.

Many of the elements are linked in a complex system of symbolic equations. They are not sufficiently independent or isolated to examine a subsystem; to solve one part, you need to solve all of the equations simultaneously. Easy to have results that cannot be predicted with naïve models. The messy transitions of the real world are not predicted.

There are genres of economic models. Macro-economic models to demonstrate the circular flow of the economy. Computable General Equilibrium models: these focus on the underlying structure of the economy, ignoring business cycles variations. They can capture one-off difference policy but not the recurring, continuing effects.

equivalent models	It is common for many kinds of systems to find an equivalent electrical circuit, mechanical, or acoustical system. The help promote understanding of the behaviour. There are many specialized techniques that can be applied to a particular form, as well techniques to convert between the representations.	Olson, H F, Dynamical Analogies, D Van Nostrand Co, 1946. This book provides great detail on electrical circuits equivalent to
identification	Constructing a model by parts and specification	mechanical and acoustical
limits of models	Models are not independent checks of their creators: models largely exist to codify a view. Some limits include: experts have their own incentives, there is a high demand for models, no matter their quality. Model selection and designed is to confirm the researcher's ideology, based on (in part) topological and structural changes.	systems.
models in logic	A model represents a particular context in which a little algebra is evaluated - a system of axioms, operators, rules for combining variables and operators into formulae, a set of entities, their properties and relationships, and a specification of the language relates to those entities and relationships, constraints on what properties there are. These models allow only deductive logic.	
	see also valuation function	
non-standard	Alternative interpretations. Try to rule out those interpretations with ambiguity, although this can be hard to spot. Things other than intended may be well described by the model.	
numerical model	Numerical models provide numerical answers to policy questions.	
partial model	Only can evaluation some statements.	
physics	Series of equations of state, relationships between material bodies, and describe their movement, action, behaviour, etc. This is usually divided into parameters, expressions, functions, geometry, coordinate system, materials, analysis.	
satisfaction models	In order of increasing difficult: parameters are independent; pairwise; all pairs.	
statistical model	Combines analytical models and simulation to create a typifying trace.	Mathsoft S-Plus 2000, Guide
	1. "Determine the variables to observe." These variables link to "the hypothesis being tested" or "the phenomena being modeled."	Vol 1, 1999
	2. "Collect and record the data observations."	
	3. "Study graphics and summaries of the collected to data to discover and remove mistakes and to reveal low-dimensional relationships between variables.	
	4. "Choose a model describing the important relationships seen or hypothesized in the data	
	5. "Fit the model using the appropriate modeling technique	
	6. "Examine the fit through model summaries and diagnostic plots	
	7. "Repeat steps 4-6 until you are satisfied with the model"	
structured models	Means of evaluating a model's quality and characteristics.	
model checking	A method for verifying whether an implementation satisfies a design specification. The implementation is translated into a model from which a system state machine can be derived. The specification describes properties, and the checking verifies that the state-machine satisfies them.	
model structure	Moments, individuals, agents, concepts, attributes, values, predictions, beliefs	
model theory ${ }_{1}$	study of formal languages and their interpretation	
model theory ${ }_{2}$	Concerned with making models of a theory. A theory has a model if and only if the theory is consistent. Such a model is a language with an abstract algebra to implement the semantics. An interpretation function that maps language elements to	

constants, functions, and predicates. The description of the language is often a table with the syntax and how to evaluate predicate phrases of that syntax. The syntax: the kinds of variable (if the language is typed) and how they combine with operators and other variables. The set of entities allowed may be more than a variable - it may include more complex noun phrases, e.g. GlobalCheckFor \$var.

Discussions of such models focus largely on the syntax (esp. well-formed formula) although the issues with interpreting meaning and finding satisfactory solutions is of greater importance in the long term (a language is learned 'once' but used for a long time), and more difficult.

see archetypical language understanding, evaluation

model world	Composed of - A set of possible elements - A set of possible attribute names - A set of possible attribute values - A set of possible world states see also universe of discourse
monotonic logic	More predicates don't change outcome
non-monotonic logic	Where other data affects outcome, even if it is not really relevant.
Montague	It is composed of: - functions are the central organizing tool for phrases and words - events (and manifestations within time and space) - processes - states - properties - actions

what	authority	description
adverb	Montague	f:proposition $\rightarrow \mathrm{t} / \mathrm{f}$
'believes'	Montague	f:individual \times proposition $\rightarrow \mathrm{t} / \mathrm{f}$ relation between individual and proposition
determiner indeterminate phrase indexical individual		quantifier on a set
	Montague	predicate
	Montague	e st e $\in \mathrm{E}$
	Cresswell	f:world \rightarrow subworld (of the given world)
individual concepts	Montague	f:world \times time \rightarrow \{ili is an individual $\}$
	Cresswell	f:world \rightarrow individual
name		\{property set \| name \in property set\}
		the of sets which name is part of
noun (singular)		
noun (plural)		\{ $\mathrm{s} \mid \mathrm{s}$ is an n \}
noun phrase		general quantifier
property	Montague	f:world \times time \rightarrow sets
property of a noun		the sets mentioned earlier for noun
situation type		f:relation \times individual $\rightarrow \mathrm{t} / \mathrm{f}$

Table 18: Accessibility relations for propositions

90-10	Relational databases need to pull in (IO) and consider data that is about 9 times the size of the resultant set.
necessary	It must be true; it cannot be otherwise. Defined operationally as X is true in all worlds at all times.
nomological	Criteria for determining if a deductive nomological explanation is worthy of acceptance:

1. The explanation contains at least one law established by evidence and accepted as true.
2. The law(s) are employed in explaining the event
3. The sentences describing the initial conditions are true
4. The description of the event is true
5. The event's description is a deductive consequence of the laws and initial conditions.
nondeterministic The next state is not completely determined by the current state and symbols in memory. A set of next possible states is so determined. Backtracking is often be employed. Non-deterministic finite automata recognize the same class of languages as deterministic finite automata, but typically have fewer states than a DFA, and are faster to construct. The backtracking often slows down execution time for a NFA, so one might employ a DFA when NFA features are not needed, or to use a DFA to find likely interesting matches, then switch to a NFA.
see also Chomsky hierarchy, deterministic
standardizes local formula into a specific format. Types of analysis (i.e. family of algorithms and measures) prefer one specific form.

clausal normal	cnf:: $:=$ disjunct form cnf $::=$ disjunc $\wedge ~$ cnf
	disjunct $::=$ literal
	disjunct $::==$ (literal \vee disjunct $)$
	literal $::=$ term
	literal $::=$ Iterm
	dnf::= conjunct
disjunctive normal	dnf::= conjunct \vee dnf
form	conjunct $::=$ literal
	conjunct $::=$ (literal \wedge dconjunct $)$
	literal $::=$ term
	literal $::=$ Iterm

notation Often a skillful choice of reference system simplifies the work.
selecting The choice of notation depends on:

- The kinds of problems you're trying to solve
- What environment you're trying to solve it in
- With whom you're trying to solve it
- How does the problem or task decompose into a given notation
- How easy is the problem to solve in the framework?
- How elegantly?
- Will it perform well?
numerical Solving questions of valuation is better with (computer) analytic rather than symbolic method. Most realistic problems can't be solved analytically. There is no

methods	single method (or a small number of methods) that both suffices and is tractable. Each potential definition substituted for a given relation name requires a different method to solve - each is a different problem. Worse, descriptions involving differential equation are even more difficult than the rest: solutions of differential equation is a large of subfield of math.	
observability	You might think that is X is not observable, is not worth talking about, or not unless it has some further level of interest. Similar observable, and seen as false, no one would talk about it. see also falsifiable, pragmatics, verificationist	
oracle machine	An oracle computes a $f()$ in finite time that the Universal Computing Machine can't do. This allows computation that a UCM can't do - or tractably do. In satisfaction problems this often takes the form stochastic and probabilistic methods. see also witness function	Copeland, BJ. Proudfoot, D. "Alan Turing's Forgotten ideas in Computer Science." Scientific American, April 1999, V28N4. p 98-
order	Usually the number of parameters.	
	See also rank	
parsers	A parser converts a sequence into another sequence: Output $_{\mathrm{j}}=$ Parser $_{\mathrm{i}, \mathrm{j}}$ Sequence $_{\mathrm{i}}$ this involves: - lexical: turning it into words and symbols - parsing based on the syntax - resolving the named variables, functions, types, and other elements - semantic actions based on matching the patterns	
	Special cases of Parsers: Top-down: LL(k) Bottom-up: LR(k) $\mathrm{k}=$ the amount we need to look ahead	
	Objectives: 1. Minimize the amount we need to look ahead 2. Minimize backtracking a. \# of times we ned to back track b. Max depth we would back track c. Average depth we would back track 3. Minimize the amount of state need to keep 4. Minimize work parser does. Backtracking, tests.	
	See also ATN, Chomsky hierarchy, Markov, regex, shift-reduce,	
LALR(1)	An approximation to LR(1) parsing.	Frank DeRemer, MIT PhD thesis, 1969
LR(k) precedence	Bottom-up parser that became the definitive parsing solution (surpassing precedence methods). 1963 Floyd: operator precedence 1966 Wirth: simple precedence	Donald Knuth "On the Translation of Languages from Left to Right" Information and Control, 8 p607-639, 1965
static parsing	Take piece of text, determine its structure without executing it.	
places	first kind: suitable for proper names	
	second-kind: names of first-level functions of one argument third-kind: names of first-level functions of two arguments	

possible worlds	Interested in counterfactual and subjunctive conditionals as well as notions of causality. Possible worlds, being imaginary, are difficult to reconcile. The concern is how much else can be true in such a world. No approach is entirely satisfactory in what else might be true.
	Structure and relationship of worlds (but not of a world). David Lewis Counterfactuals
	Method to decide if a formula is true/false
	Form of empirical data. Fundamental tenet that data is stored as row \& columns in tables; we treat it as accessible in terms of rows and columns
	See also belief context, propositional attitude
possibility	It might be the case that. Operationally defined as a world and time exists that it is true in.
predicate	It is a phrase posited to be either true or false. It includes atleast one variable, attribute or function; it may include an operator. There is often atleast one free (unbound) variable. Not all predicates are genuine properties. see also sentence
problem solution	1. Start with users knowledge of problem
	2. Clear separation of constraints and combinatorial search
	a. Discrete variables represent the primary decisions in the problem
	b. High-level constraints represent the relationship between variables
	c. Constraints can be combined to match the real-word's complex constraints
	3. Generate multiple solutions quickly
	4. Refine solutions
procedural semantics	The operations that one is supposed to carry out (rather than merely discussions of possible facts). Meaning that a statement takes action or changes the world. Backtracking can be very expensive (by throwing 'exception'), unreliable (errors reversible only by best effort) or not possible at all (as with destructive operations).
property ${ }_{1}$	An attribute (i.e. shared by all members of a class), often one that can be measured; See also attribute, quality
physical property	That which can be measured and observed with changing the composition or identity of a substance. Some physical properties are defined as a relation on two vectors.
chemical property	In order to observe this property we must carry out a chemical change.
extensive property	Depends on how much matter is being considered.
intensive property	This measured value does not depend on how much matter is being considered.
macroscopic property	Measurement determined directly.
microscopic property	Measurement determined by an indirect method.
property ${ }_{2}$	A function that returns, for a given situation, the set of entities that are in that state or express that features. For example, the property is-asleep returns the set of people asleep in a given situation. This definition is reverse of the conventional one.

proposition

propositional attitude

```
A relation between individuals and propositions. Applies to believes, know, doubt, regret, hope, etc.
See also belief context
\begin{tabular}{|c|c|c|c|c|}
\hline Proposition & Individual & World1 & World2 & \multirow[t]{3}{*}{Table 19: Accessibility relations for propositions} \\
\hline believes & Bob & 1 & 2 & \\
\hline believes & Bob & 1 & 27 & \\
\hline ... & & & & \\
\hline knows & Bob & 1 & 3 & \\
\hline knows & Sally & 7 & 31 & \\
\hline ... & & & & \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline Proposition & Individual & Function & Context \#
\end{tabular} Table 20: Proposition attitude
```


propositional

 connectivespuzzle

Boolean operators (not, and, or, etc.) or set operators.

SEND+MORE=MONEY

Dudeney, Strand Magazine, 1924

```
- 'VIOLIN * \(2+\) VIOLA \(==\) TRIO + SONATA',
- 'SEND + A + TAD + MORE == MONEY',
- 'ZEROES + ONES == BINARY',
- 'DCLIZ + DLXVI == MCCXXV',
- 'COUPLE + COUPLE == QUARTET',
- 'FISH + N + CHIPS == SUPPER',
- \(\quad\) 'SATURN + URANUS + NEPTUNE + PLUTO == PLANETS',
- 'EARTH + AIR + FIRE + WATER == NATURE',
- ('AN + ACCELERATING + INFERENTIAL + ENGINEERING + TALE + ' +
- 'ELITE + GRANT + FEE + ET + CETERA == ARTIFICIAL + INTELLIGENCE'),
- 'TWO * TWO == SQUARE',
- 'HIP * HIP == HURRAY',
- \(\quad \mathrm{PI} * \mathrm{R} * * 2==\) AREA',
- 'NORTH / SOUTH == EAST / WEST',
- 'NAUGHT ** \(2==\) ZERO ** 3 ',
- 'I + THINK + IT + BE + THINE == INDEED',
- \(\quad\) 'DO \(+\mathrm{YOU}+\mathrm{FEEL}==\) LUCKY',
- 'NOW + WE + KNOW + THE == TRUTH',
- 'SORRY + TO + BE + A + PARTY == POOPER',
- 'SORRY + TO + BUST + YOUR == BUBBLE',
- 'STEEL + BELTED == RADIALS',
- 'ABRA + CADABRA + ABRA + CADABRA == HOUDINI',
- 'I + GUESS + THE + TRUTH == HURTS',
- 'LETS + CUT + TO + THE == CHASE',
- 'THATS + THE + THEORY == ANYWAY',
```

quality	Distinguishing essential attribute or characteristic property.
	See also attribute, property.
quantifier	few, many, more .. than, each, almost all, etc.
elimination	Quantifiers can be eliminated, in some circumstances, allowing easier analysis. The approach is to try to show it is equivalent to another statement, one without quantifiers. The later can be evaluated in a fixed number of steps.
generalized	Set theoretic notation, primarily using set disjunction (and count) to verify. The quantifier is the comparison, number, and set expression (whose cardinality is examined):
	All A are $\mathrm{B} \quad\|\mathrm{A} \cap \mathrm{B}\|=\|A\|, A \subseteq B$
	Some A are B $\quad\|A \cap B\|>0$
	\# A are B $\quad\|A \cap B\|=\#$
	No A are B $\quad\|A \cap B\|=0$
	MostA are $\mathrm{B} \quad\|\mathrm{A} \cap \mathrm{B}\| \geq 0.5$
rank	The rank of a formula is greater than or equal to the rank of each of its elements, operators, and parameters.
	See also order
reducibility	The reverse of composability, concerned with decomposing statements into observable terms.
reduction procedure	Converts a declarative language into a procedural one. see also compiler
reference	A symbol may refer to something (usually this must be done thru a distinct meaning).
reference point	Used in modal logics, a formula has two clauses, both with their own modal operators. With tense logic there is often a reference time.
	see also modal logic
regimented	Orderly separation of premises, facts, and conclusions so that conclusions are true in a stricter sense - by preventing invalid ones.
	Truth separated into analysis outside of the language (see Halting problem)
	Deductive vs inductive methods.

regular expression

resolution method	A technique to solves truth-conditional problems in clausal form; typically this is further restricted to conjunctive normal form. Works by testing almost every combination of variable assignment against the rules, keeping only those that do not contradict. Set of support are the primary and supporting axioms; no two primary axioms are resolved against each other.
	First, prepare the formulae:
	1. First negate the theorem to be proved, i.e. make F into $\sim \mathrm{F}$
	2. Adjoin $\sim \mathrm{F}$ to the axioms
	3. Rewrite the system as: $\sim \mathrm{F}, \mathrm{A} 1, \ldots, \mathrm{An}$
	The method involves five steps:
	1. Resolve pairs of clauses until a contradiction is reached; this is done by unifying the variables and treating each clause is the theorem to be proved in its own resolution process. The resolution of each clause also provides further unification information
	2. F has been proved if a contraction was found. Otherwise cannot be proved by the axioms.
	See also satisfaction, unification
clausal form	Each term is either a variable, or $\mathrm{f}(\mathrm{x} 1, . ., \mathrm{xn})$ (where f is a function of n arguments, and $\mathrm{x}_{1} . . \mathrm{x}_{\mathrm{n}}$ are terms). Formula's are of 3 kinds:
	1. Atomic - any predicate the arguments of which are terms. All atomic formulas are formulas
	2. If $\mathrm{F} \vee \mathrm{G}, \mathrm{F} \wedge \mathrm{G}, \sim \mathrm{F}$ are all formulas if F, G are formulas,
	3. All $\mathrm{F}(\mathrm{v})$, Exists $\mathrm{F}(\mathrm{v})$ are formula, if F is a formula and v is a variable.
unit preference strategy	Choose clauses that are as short as possible to unify and resolve.
satisfaction Carnap	The values a formula is true for; if true for the value or range of values. Or, rather, checking that a symbols value is consistent with the constraints.
	See also resolution method, unification
Tarski	Every possible value for every variable in the universe, so long as the formula is true.
boolean	Givens:
	A set of variables: $\mathrm{v}_{0}, \ldots \mathrm{v}_{\mathrm{n}}$ A formula using those variables
	Assign each variable a value $(0,1)$ such that the formula evaluates to $1-$ or find all such valid assignments. This is an NP complete task.
	Steps: 1. "Decision step selects a variable for the next assignment, either statically with a fixed variable order, or dynamically, depending on information gathered during search.
	2. "Deduction step infers information from the current partial assignment. Boolean constraint propagation... exploits the fact that a partial assignment can imply values for other variables.
	3. "Diagnosis step analysis [a] contradictions' cause and uses the inferred knowledge to search more efficiently."
	see also BDD (binary decision diagram), bounded model checking
parameter search	Givens:
problem	Initial \& boundary conditions
	A set of constraints
	Technique to solve the problem

John A Robinson "A machine oriented logic based on the resolution principle." Journal of the ACM 12(1):23-41
January 1965, Syracuse
University

Platzner, Marco "Boolean Satisfiability" IEEE Computer, IEEE Computer, April 2000, p60

Summary: based on binary Hyper-Resolution \& Equality Reduction can solve many SAT problems without search. Bacchus "Exploring the Computation Trade of more Reasoning and Less Searching" 2002

Then it builds a TRIE, assigning a number to each node first. The Trie is like the symbol table, except that shifts have state numbers, and there is a column for number. Then all of the symbols for next state are added, given a reduce step. Finally, all of the remaining symbols are added, and given an error state.

See also parsing

signature	A list of the operations available in the abstract algebra. see also algebraic structure			
situation	A method of eliminating quantifiers, at least in certain circumstances			
Skolemization	whatever the process announces is correct.	\quad	sound	Intended interpretation
:---	:---			
standard model		\quad	See also non-standard models	
:---				

	X is equal to Y
linear time	Linear time is represented a sequence of events (there is no concept of duration), augmenting prepositional logic with 8 operators describing the past and future:

- Always after (in the future),
- Sometime after (in the future),
- Until
- Next cycle
- Always in the past
- Sometime in the past
- Since
- Previous cycle

This can be used to analyze contracts and behaviour of procedures or algorithms. This logic can be extended with counts or back-references.

See also Büchi automaton

metric Extends linear temporal logic with the concept of duration - each operator allows an upper and lower bound on duration.

tense

and reference time
Tense reflects a combination of philosophers and logician competing senses of what time should be. The description of tenses in language invariably describes how Latin
should be used and ignores the distinctions of the languages under study.

Of special concern are sentences with phrases that must unify their time sequence:
When Jack opens the door, Helen sees the books
The idea is separate the analysis into three kinds of time: ${ }^{2}$ time of speech/statement (S), a reference time (R), and a time of event/state in each phrase ($\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots$)

The tense indicates when the event happened relative to the speaker, when the statement was uttered relative to a reference time, if the event (or state) has finished, or is continuing.

The perfect tense is that the event happened and is finished; imperfect is that the event happened and is continuous or still going on.

There is some debate; some sentences employ conventional counterfactuals, others value the future but it is not clear whether it is an event that is possible to occur or necessary to occur. Tense also has issues with handling a narrow region or window of time (Jimmy Carter has been elected President)
See also Clock, Temporal logic

	Time of speech
past	$\mathrm{S}>\mathrm{R}$
present	$\mathrm{S}=\mathrm{R}$
future	$\mathrm{S}<\mathrm{R}$

	Time of event / state
perfect	$\mathrm{E}<\mathrm{R}$
simple	$\mathrm{E}=\mathrm{R}$
posterior	$\mathrm{E}>\mathrm{R}$
imperfect	$\mathrm{E}_{\text {begin }}<\mathrm{R}, \mathrm{E}_{\text {end }}>\mathrm{R}$

[^1]Table 24: Tense of when the speech act took place

Table 25: Tense of when the state or event took place

Tense	Example	Time of speech	Time of event
simple present Jack sings $\mathrm{S}=\mathrm{R}$ detail 26: Tenses in more			
simple past Jack sang simple future Jack will sing present perfect Jack has sung past perfect Jack had sung future perfect Jack will have sung posterior present Jack is going to sing posterior past Jack was going to sing posterior future Jack will be going to sing	$\mathrm{S}<\mathrm{R}$	$\mathrm{S}<\mathrm{R}$	$\mathrm{S}=\mathrm{R}$
		$\mathrm{S}>\mathrm{R}$	$\mathrm{E}=\mathrm{R}$

Tense	Example	Time of speech	Time of event
counterfactual	If Nixon had won in 1960, we would have \ldots	$\mathrm{S}=\mathrm{R}$	$\mathrm{E}<\mathrm{R}$
subjunctive	If Jack should sing, I'll like it	$\mathrm{S}=\mathrm{R}$	$\mathrm{E}>\mathrm{R}$

Table 27: Counterfactuals in more detail

operation	Definition
after before future (strong) future (weak)	The instant A is later than the instant B happen
It will always A is earlier than the instant B past (strong) past (weak) present (strong) present (weak)	It shall be the case that A
It is the case at the instant A that B	
It has always been the case that A	
It has been the case that A	
It is always the case now that A	
It is the case now that A	

Tense	Intension	Notation
after	A before B	A after B
before	$\mathrm{A}<\mathrm{B}$	A before B
future (strong)	$\forall_{\tau}[\tau$ After $R \rightarrow(A, \tau)]$	A always shall happen
more detail (R is a reference		
moint)		

terms Negotiation of operational definition of terms
binding Conversion of expressions and terms into immediately operational or evaluatable forms. Evaluation produces singular output in a specified range.
theory A system of axioms - atleast in the sense here
formally complete All well-formed sentences - or their negation - can be proved
formally consistent A well-formed sentence with a proof does not also have a proof for its opposite.
those things you The term 'reference' or 'refers to' has a much narrower and stricter definition in logic. 'The are referring to things that you are referring to' is found through a combination of reference as well as
extension.
see also extension, reference

time	Time as an index ordering is naïve, but often serviceable for many analysis
	See also temporal logic
transformational - generative grammar	Turing-complete but there is very little linguistic or cognitive significance to machine operations or structure. Much of the work becomes equivalent to 'coding' and 'debugging' issues.
truth	Roughly five theories: correspondence theory, coherence theory, pragmatics, radicalinterpretation and verificationist. The verificiationist serves as decidability, and correspondence is often used to determine true or false. see also observability
degrees of	Please pretend this doesn't exist! Logic completely fails!
coherence theory	A statement is true iff it coheres with other statements we hold to be true. For example, "All X is Y " might found to be true if X is defined (as special type of Y) using a Genus \& Species method of definition. Coherence is subordinate to empirical (verificationist) findings. If "All X is Y " is found to be empirically false, then the Coherence theory (the statements we've accepted, specifically the aforementioned Genus \& Species definition). see also correspondence, hierarchic definitions, verificationist
correspondence theory	The true statements are those that correspond to facts. Most logical analysis is limited to very narrow and regimented languages; its utility has been challenged on these grounds. see also World Model
pragmatics	The statements work out well in the long run
radical interpretation	A statement is interpretable only if the listener has a great deal in common with the speaker, and the listener's language has a great deal in common with the speaker's. Donald Davidson 'Radical Interpretation', Dialectica, 27 (1973), p314-28. Reprinted in
verificationist	A formula is decidable - and of possible significance - only if one knows how to verify it, such as how to observe it. Very few propositions and topics of interest can be observed or otherwise verified in such a manner. Once verified it is known as true or false. see also observability Inquiries into Truth and Interpretation (1984) p125-39
truth theoretic	Focused on the construction if statements
undecidable	There are no contradictions if the assertion is treated as true, and there are no contradictions if the assertion is treated as false. That is, proof by contradiction does not work.
	See also decidability
unification	Unification is a key step in the resolution method, operating like regular expression matching. Unification operates on a substitution table (see the example below) adding further entries as it binds variables. Unification takes this table, a goal clause, and a clause in the table. It tries every combination of variable assignments to make the two clauses equivalent. It steps thru the both clauses in the same way:
	1. If this element is a free variable, bind it to the corresponding element in the other clause. This is done by adding an entry into the substitution table.
	2. If this element is a bound variable, look up its value; if it is a literal, use that. Perform the same on the other side. If the two values are defined, but do not match, abort; unification cannot be performed.
	3. If the element has parameter or sub-ordinate elements, a unification step is performed on those parameter clauses of both main clauses.

This process repeats until no more items are added to the table.
This process effects the inference of variables values (or sets of acceptable values). It can link variables together, showing those that alias each other. It can be modified to remove possibilities from a potential set.
Term Rewriting systems perform a string substitution, replacing each occurrence of a variable with its bound value.
It is easy to understand the substitution table in cases where a variable can be bound to a simple value (e.g. a scalar or a string), a structure whose elements are found. What makes unification powerful is the ability it for a variable to be bound to another variable $-\mathrm{v}_{4}$ (in this context) will inherit whatever v_{1} is bound to. A variable can also be bound to a structure, whose elements might not be bound, or might be bound to another variable.

One drawback is that the table can have cycles. An occurs check operation can be attempted to catch this occurrence, but the check is very expensive.
see also resolution principle, tableau

Variable	Binding
$\mathbf{v}_{\mathbf{1}}$	1
$\mathbf{v}_{\mathbf{2}}$	"bob"
$\mathbf{v}_{\mathbf{3}}$	house(red)
$\mathbf{v}_{\mathbf{4}}$	v_{1}
$\mathbf{v}_{\mathbf{5}}$	house $\left(v_{2}\right)$

Table 30: Example substitution table

Can express logical statements, extra-linguistic statements, and statements about meaning and truth in the language.

Everything we talk about. Often this is rigidly (and artificially) limited with a closed-world assumption.

1. There is no valid combination (or chain) of relations that allow two (or more) items of that kind or type to be related.
2. If we are talking about two specific items, there are some relationships between the kinds but all deny that the two specific items are related.

In theories constructed as a model, one needs to know how names and terms refer to entities and their properties, and how to evaluate sentences. For example Sally's height \& mass, or an electrons charge. This is called a 'valuation function' although it is seldom a simple function, and often better understood as a procedure. This valuation assigns value for formula based on those references and how they combine (composition), table of forms and their values (idiomatic).
see also evaluation procedure
One method is to use the problems declarative specification to specify a grammar and a family of automatons. The first automaton is special in that the sentences it recognizes (accepts) are also solutions to the problem. The other, optional, automatons generate fragments of the language that may be present in the acceptable sentence(s). Despite the unusual pretense of the solution as a sentence in an imaginary language, this technique can be very efficient.
see also Chomsky hierarchy, language fragment
Quantitative ambiguity (e.g. insufficiently precise term), task-related ambiguity (needs a plausible principle to resolve the question)

Value of the variable is controlled by a quantifier, is a parameter or is a constant
free A variable that is not a constant, not a parameter, and is not controlled by a quantifier

```
verificationist
WalkSAT
max WalkSAT
well-formed
formula
well-posed
problem
witness function A function that 'testifies' a proposition is highly likely to be true.
see also probability estimator
world model often needs to include a modal logic to support the history. Need to incorporate different times in a possible world and branching at times.
- The set of all possible words of category s;
- A function that generates all the words of category S
- The set of word types
- A map of the words of category \(S\) onto the set of word types.
```

A fact base about the world, and operations used in reasoning about the world. Most
\{
$\mathrm{m}=$ sum of weights(sat clauses)
if $m>$ threshold then return solution
$c \leftarrow$ random unsatisfied clause
with probability p
flip a random variable in c
else
flip variable in c that maximizes m
\}
\}
return failure with best solution found

A formula that has all variables bound. A part of the syntax of the algebra's language. Much of discussion mixes between describing the syntax and much more complex issue of meaning (satisfaction)

The information is clearly specified. We can determine when the problem has been solved. The problem does not change during its attempted solution.
witness function A function that 'testifies' a proposition is highly likely to be true.
see also probability estimator
world model

```
See Truth
```

```
for(l=1; I < Max Tries; l++)
```

for(l=1; I < Max Tries; l++)
{
solution = random truth assignment
for (J=1; J < MaxFlips; J++)
{
if all clauses satisfied clause then return solution
c}\leftarrow\mathrm{ random unsatisfied clause
with probability p
flip a random variable in c
else
flip variable in c that maximizes the number of satisfied claims
}
}
return failure

```
a version without memory explosion is at
http://alchemy.cs.washington
.edu

\section*{for ( \(\mathrm{J}=1 ; \mathrm{J}<\) MaxFlips; J++)}
```

for(l=1; I < Max Tries; l++) a version without memory

```
for(l=1; I < Max Tries; l++) a version without memory
{
{
        flip variable in c that maximizes m
    turn failure with best solution found
```


[^0]: ${ }^{1} \mathrm{http}: / / \mathrm{www}$. wired.com/gaming/virtualworlds/commentary/games/2007/05/gamefrontiers_0521

[^1]: ${ }^{2}$ Riechenbach, Hans 1947 Elements of Symbolic Logic

